
Inducing Thought Processes: Bringing Process Measures and Cognitive
Processes Closer Together

MICHAEL SCHULTE-MECKLENBECK,1,2* ANTON KÜHBERGER,3 BENJAMIN GAGL4 and FLORIAN HUTZLER3

1Department of Business Administration, Consumer Behavior, University of Bern, Bern, Switzerland
2Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
3Centre of Cognitive Neuroscience & Department of Psychology, University of Salzburg, Salzburg, Austria
4Department of Psychology & Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Goethe University

Frankfurt, Frankfurt, Germany

ABSTRACT

The challenge in inferring cognitive processes from observational data is to correctly align overt behavior with its covert cognitive process. To
improve our understanding of the overt–covert mapping in the domain of decision making, we collected eye-movement data during decisions
between gamble-problems. Participants were either free to choose or instructed to use a specific choice strategy (maximizing expected value or
a choice heuristic). We found large differences in looking patterns between free and instructed choices. Looking patterns provided no support
for the common assumption that attention is equally distributed between outcomes and probabilities, even when participants were instructed to
maximize expected value. Eye-movement data are to some extent ambiguous with respect to underlying cognitive processes. Copyright ©
2017 John Wiley & Sons, Ltd.
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INTRODUCTION

The focus of research in the field of judgment and decision
making has shifted from understanding what people choose
to how they decide (Ford, Schmitt, Schechtman, Hults, &
Doherty, 1989; Johnson & Ratcliff, 2014; Krajbich, Armel,
& Rangel, 2010; Svenson, 1979, 1996). Various process
tracing methods—including thinking aloud, mousetracking,
eye tracking, and brain imaging—have been instrumental in
this development (Schulte-Mecklenbeck, Kühberger, &
Ranyard, 2011a, 2011b). In all process tracing methods, a
close relationship between overt information acquisition
and underlying covert cognitive processes is a core assump-
tion. For example, activation of some brain area, measured
with electroencephalography or functional magnetic reso-
nance imaging, is taken to be indicative for cognitive pro-
cesses associated with this area. The reasoning works as
follows: (i) When a task recruits some psychological process
Pr, brain activation pattern A is likely to be found; (ii) in the
present study, a pattern of activation A was found when task
T was presented; it can therefore be concluded that (iii) the
psychological process Pr was recruited by task T (Machery,
2014). This reasoning is deductively invalid because differ-
ent processes can be responsible for the same observable pat-
terns. Poldrack (2006, p. 59) has diagnosed an “epidemic of
reasoning” in the neuroscience literature, with researchers
commonly committing the fallacy of reverse inference.

Can such reverse inferences also be found in decision-
making studies? We think that this is the case and want to il-
lustrate the problem by presenting two different perspectives

on risky decision making—the perspective of an economist
versus that of a psychologist. Imagine that both the econo-
mist and the psychologist are running an eye-tracking study,
with participants making choices with gamble problems.
Both observe a participant’s gaze moving from an outcome
(O) to the adjacent probability (P): 0→P.1 The economist
might interpret this pattern within an expected value (EV;
Hacking, 1984) framework where “plausible implications”
for the processing of information are (i) information acquisi-
tion develops within and between gamble-problems; (ii) out-
comes and probabilities are processed pairwise and
consecutively; and (iii) each gamble receives the same
amount of attention (Payne, Braunstein, & Carroll, 1978).
The economist thus concludes that the 0→P pattern is indic-
ative of calculating an EV. The psychologist, on the other
hand, might prefer a heuristic framework. He favors, for in-
stance, the priority heuristic (PH; Brandstätter, Gigerenzer,
& Hertwig, 2006) as a model of risky choice. The 0→P pat-
tern for him is indicating reading,2 a pre-choice behavior
necessary before the actual choice can be taken. That is, the
two models force the two observers into radically different
interpretations of the same behavioral pattern. Nothing in
the 0→P transition, except its duration (given other assump-
tions about processing speed for calculation vs. comparison),
can be used to identify the correct interpretation.

How prominent is this reasoning in the process tracing lit-
erature? Indeed, there are numerous examples where overt
patterns, possibly indicative of some cognitive process, are

1We denote → as a transition between two pieces of information, in this ex-
ample, from an outcome (O) to a probability (P).
2Brandstätter, Gigerenzer, and Hertwig (2008, p. 286) dissect a first reading
phase into reading all eight pieces of information available in a gamble—
which would result in four outcome–probability transitions (and three other
types of transitions not relevant here).
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interpreted within some theoretical account, possibly falling
prey to the reverse inference problem (Brandstätter et al.,
2006; Day, 2010; Fiedler & Glöckner, 2012; Glöckner &
Herbold, 2011; Johnson, Schulte-Mecklenbeck, &Willemsen,
2008; Pachur, Hertwig, Gigerenzer, & Brandstätter, 2013;
Riedl, Brandstätter, & Roithmayr, 2008; Su et al., 2013).

In what follows, we propose an experimental approach
that turns this direction of inference upside down; we empha-
size the forward inference route from cognitive processes to
behavioral patterns by making acquisition processes explicit
through instruction. For instance, by instructing a participant
to multiply an outcome with a probability, we expect at least
one acquisition of each component (O and P) as well as at
least one transition between the two (either O→P or
O→P). Failure to observe this pattern renders the mapping
of overt behavior and cognitive processes questionable. The
same reasoning applies for other mathematical operations
(e.g., subtraction), or simple comparisons: If people were
comparing two outcomes, we ought to see an O→O pattern.
Comparing patterns following from instructed strategies to
patterns where no instructions are provided thus enables an
evaluation of the link between overt and covert processes
(i.e., between looking and thinking).

The idea of instructing participants to follow specific
strategies has been used in research on visual attention,
where the effects of instruction (top-down) have been com-
pared with those of stimulus-driven (bottom-up) processes.
Yarbus (1967) was among the first to establish that different
instructions (e.g., searching for a specific person vs. counting
the number of people in a picture) result in different eye-
movement patterns. His results have more recently been rep-
licated for visual perception (DeAngelus & Pelz, 2009) and
consumer choices (Glaholt, Wu, & Reingold, 2010; Pieters
& Wedel, 2007).

For our interest in risky gamble problems, it is beneficial
to use strategies that can be distinguished easily. We define
a gamble problem as a choice between two gambles (A or
B). Each gamble consisted of two outcome–probability pairs
(see Appendix A for a full list of the gamble problems, which
were taken from Pachur et al., 2013). We chose to pit two
fundamentally different perspectives on risky choice against
each other: (i) EV theory,3 which consists of first calculating
the EV for each gamble and then choosing the gamble with
the maximum (i.e., higher) EV, and (ii) the PH (Brandstätter
et al., 2006), which makes choices based on a comparison4 of
different gamble components: the minimum gain, the maxi-
mum gain, and their probabilities, respectively.

What are the key differences between these decision strat-
egies? An EV is calculated for each gamble by summing up
the products of all O–P pairs and then choosing the gamble
offering the higher EV. The PH, in contrast, applies three

rules (in this example, for gambles consisting of gains): (i)
the priority rule is going through gamble problems such that
the minimum gain (i.e., the minimum amount of money to
win) is considered first, followed by the probability of the
minimum gain, and finally the maximum gain (i.e., the max-
imum amount of money to win); (ii) the stopping rule re-
quires evaluation to stop if the minimum gains differ by at
least 1/10 (or more) of the maximum gain, otherwise to stop
if probabilities differ by at least 1/10 (or more) on the prob-
ability scale; and the (iii) decision rule, choosing the gamble
with the more attractive gain or probability.5

For the sake of comparison, we can also formulate EV in
terms of the same set of rules. In EV, the priority rule gives
no priority to any aspect of a gamble problem. Thus, all Os
and Ps have equal priority, as have small or large values. The
stopping rule requires multiplication of all O–P pairs and
storing EVs until all O–P pairs have been processed; and the
decision rule requires choosing the gamble with the highest
EV and, if no maximum EV exists, choosing randomly.

In the present study, we instruct one group of participants
to follow EV and another group to follow PH while choosing
between gambles and record each group’s eye movements.
As a within-subject comparison, we also collect eye-
movement data in a control condition without strategy-
specific instructions. In comparing these three conditions,
we evaluate the mapping between instructed thought pro-
cesses and overt information acquisition behavior.

METHOD

Participants
Fifty students from the University of Salzburg participated in
the study. Two participants were excluded from the data
analysis because they could not be calibrated on the eye-
tracking system. The remaining 48 participants (34 women)
had a mean age of M=23.5 years (SD=4.7). All participants
had normal or corrected-to-normal eyesight.

Apparatus
Eye-movement data were recorded using an EyeLink CL eye
tracker (SR Research Ltd, Ontario, Canada) with a sampling
rate of 1000Hz. Eye movements were obtained from the
right eye, with the participant’s head stabilized on a chin
and head rest. The distance between the eye and the monitor
(Vision Master Pro 454, Iiyama, Tokyo, Japan) was held
constant at 52 cm (20.5 in.). The screen had a diagonal of
21 in. and a resolution of 1024×768pixels; the refresh rate
was 120Hz. Stimuli were presented in Courier New font
(18 point); a single letter corresponded to about 0.4° of visual

3We chose EV because (i) it utilizes only multiplication and addition at its
core and (ii) it can be understood as a representative for several integration
or expectation models that lend themselves to a similar process interpreta-
tion, such as subjective expected utility theory (Friedman & Savage, 1948)
and (cumulative) prospect theory (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992).
4Note that, for example, for estimation of the 10% threshold in the PH calcu-
lations are needed.

5According to Brandstätter, Gigerenzer, and Hertwig (2008), the term “at-
tractive” refers to the gamble with the higher gain and the lower probability
of the minimum gain. Depending on how many priority steps have to be ex-
ecuted, a distinction is made between one-reason (decision based on mini-
mum gain), two-reason (decision based on probability of minimum gain),
and three-reason gambles (decision based on maximum gain). These labels
provide both information about characteristics of the gambles and procedural
information about how a gamble should be solved.
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angle. The experiment was preceded by a nine-point calibra-
tion (using a grid of 3 horizontal positions ×3 vertical posi-
tions). After practice trials and before each experimental
condition, a fixation check tested the accuracy of the
measurements and initiated a full re-calibration in case of
failure. Participants entered choices via a button box
(Microsoft SideWinder Plug & Play Game Pad, Redmond,
WA, USA).

Material
For each gamble problem, outcomes and probabilities were
presented at equidistant locations in a 2× 4 matrix, in either
horizontal or vertical format (between subjects) to counteract
reading effects (see Figure 1 for an example of each format).
Participants were presented with 24 gamble problems in ran-
domized order. Within each gamble problem, we
counterbalanced the position of each outcome–probability
pair in each left/right or top/bottom position.

Procedure
Participants first received general information about the eye-
tracking setup, a description of the gamble problems, and
four unrelated gamble problems as a warm-up task. All par-
ticipants were then presented with the 24 gamble problems
and were asked to choose their preferred gamble, without
specific instructions. This will be referred to as the no in-
struction (NO) condition. Subsequently, the same 24 gamble
problems were presented again, with half of the participants
being instructed to apply the EV strategy and the other half
to apply the PH. Participants were instructed in detail to do
each step necessary to proceed according to the respective
strategy, EV or PH. In addition, the relevant instructions
were provided in paper form throughout the experiment. In-
structions were such that, for every necessary step, the in-
structions identified (i) the target variable(s), for example,
outcome 1 of gamble A; and (ii) the required process, for ex-
ample, look at, multiply, add, store in memory, and compare.

Appendix B provides translations of the German instruc-
tions, separately for EV and PH.

Participants received a flat payment of €5 and could earn a
bonus of up to €5 based on their choices. We additionally
raffled a €100 Amazon gift certificate among all participants.
The whole experiment took approximately 45minutes.

Data preparation
Eye-movement data were analyzed with a customized Perl
script available from the third author. Saccade and fixation
events were defined online by the host of the eye-tracking
system and read out by the script if a fixation landed on
one of the pre-defined, non-overlapping areas of interest
(AOIs). Eight AOIs with a size of 60×60 pixels were de-
fined, with the numeric values in the center. Fixation dura-
tions shorter than 50milliseconds were removed from the
analysis. The number and duration of fixations were ana-
lyzed for each AOI. All analyses were run with R version
3.2.4 (R., 2016).6

Predictions
Our analysis will focus on the following process measures:
(i) acquisition patterns, (ii) frequencies of acquisitions, and
(iii) durations of acquisitions. For each of these measures,
we will derive a separate set of predictions. Table 1 provides
a detailed set of predictions (and results) for fixation frequen-
cies (also specifying expected differences for one-, two- and
three-reason gambles).

Acquisition patterns
In EV, we instructed participants to base their decision on the
calculation and comparison of an EV, for example, to

Figure 1. Two gamble problems, one in vertical (left) and one in horizontal (right) presentation format. Each gamble problem consists of two
gambles (A and B), which in turn consist of two outcome–probability (O–P) pairs. The areas of interest (shown in gray and labeled O1, P1,…)

and O–P labels are for presentation purposes only. A fixation cross was displayed before the onset of each trial

6Data and code are available at https://github.com/michaelschulte/
InducingCognitiveProcesses.
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multiply O and P. Hence, we expect frequent within-gamble
transitions O→P or P→O. In PH, we instructed partici-
pants to base their decisions on the PH, for example, to com-
pare minimum outcomes. Hence, we expect frequent
O→O or P→P transitions between gambles, depending
on the number of comparisons.

Frequency of fixations
In EV, we expect no difference in the number of fixations of
O and P.

In PH, the number of fixations to O and P is dependent on
the number of reasons (one-, two-, or three-reason gambles;
Brandstätter & Körner, 2014).

Speculatively, we would also expect that execution of PH
results in more fixations than EV given its rather complex se-
quential nature.7

Duration of fixations
The fixation duration—that is, the duration between two sac-
cades in which the eye rests on a specific location—is taken
to be indicative of attention (Rayner, 1998). However, it may
also indicate consumption of cognitive resources. For in-
stance, if it is more effortful to multiply an outcome by a
probability (EV) than to compare the size of two outcomes
(PH), the average fixation duration should be longer for mul-
tiplication than for comparison. It is clear from the literature
that duration of fixation is associated with the complexity of
the process executed (Velichkovsky, 1999). Hence, EV,
which involves both multiplication and adding processes,
can be expected to result in longer fixation times than PH,
which requires only simple comparisons.

RESULTS

Choices
First, we evaluated whether participants’ choices were con-
sistent with the strategy they were instructed to use: EV or
PH. We restricted this choice analysis to gamble problems
3, 6, 9, 11, 14, 17, 20, and 23 (Appendix A), because in these
problems, (i) the EV ratio was not 1, making it possible to
decide based on the EV, and (ii) EV and PH make different
predictions. The instructions were effective in guiding partic-
ipants to the predicted choices. Participants instructed to use
EV chose the higher EV gamble in 62% of the gambles; par-
ticipants instructed to use the PH made corresponding
choices in 80% of the gambles. In the NO condition, 58%
of choices were in line with EV, and 42% in line with PH.
Note that it is difficult to choose correctly in the EV condi-
tion, because the difference in EV is of a maximum of only
7% (see the ratios of EVs for the gamble problems listed in
Table A1). In a pilot study for this experiment, we used a
gamble set with less difficult gambles in a similar experimen-
tal paradigm. Here, participants in the EV condition made
72% corresponding choices, while participants in the PH
condition made 79% corresponding choices.8

Acquisition patterns
The EV and PH differed substantially in terms of the se-
quence in which information was accessed. We analyzed
these patterns by calculating an overall search metric (SM).

The search metric
A popular method for characterizing overall patterns of infor-
mation acquisition is to calculate the ratio of within- to
between-gamble transitions by applying Böckenholt’s
(Böckenholt & Hynan, 1994) SM calculation:

Table 1. Comparisons between outcomes and probabilities with predictions of acquisition patterns separately for EV and PH

Comparison

Predictions Empirical findings RMSD

EV PH EV PH NO NO–EV NO–PH

O vs. P Or = 1 =Pr = 1 Or = 1>Pr = 1 57.6> 42.4 77.7> 22.3 56.2> 43.8 12.8 < 27.1
Or = 3 =Pr = 3 Or = 3>Pr = 3 54.3> 45.7 58.8> 41.2 48.9< 51.1 12.1 < 17.4

Omax vs. Omin Omax
r¼1 ¼ Omin

r¼1 Omax
r¼1 < Omin

r¼1 64.7> 56.0 82.8> 76.0 62.8> 55.6 18.8 < 30.2
Omax

r¼2 ¼ Omin
r¼2 Omax

r¼2 < Omin
r¼2 68.6> 43.9 83.6> 47.8 62.9> 44.3 16.4 < 22.9

Pmax vs. Pmin Pmax
r¼2 ¼ Pmin

r¼2 Pmax
r¼2 < Pmin

r¼2 31.4< 56.1 16.4< 52.2 37.1< 55.7 16.4 < 22.9
Pmax
r¼3 ¼ Pmin

r¼3 Pmax
r¼3 < Pmin

r¼3 44.0< 53.0 23.7< 56.0 48.2< 56.9 20.0 < 27.9
Omax

r¼1; Omax
r¼2vs: Omax

r¼3 Omax
r¼1 ¼ Omax

r¼3 Omax
r¼1 < Omax

r¼3 64.7> 56.0 82.8> 76.3 62.8> 51.7 18.5 < 35.0
Omax

r¼2 ¼ Omax
r¼3 Omax

r¼2 < Omax
r¼3 68.6> 56.0 83.6> 76.3 62.9> 51.7 16.5 < 35.0

Pmin
r¼1 vs: Pmin

r¼2; Pmin
r¼3 Pmin

r¼1 ¼ Pmin
r¼2 Pmin

r¼1 < Pmin
r¼2 44.1< 56.1 42.9< 52.2 44.4< 55.7 19.1 < 28.1

Pmin
r¼1 ¼ Pmin

r¼3 Pmin
r¼1 < Pmin

r¼3 44.1< 53.0 23.9< 56.0 44.4< 56.9 19.1 < 28.1

Note: Empirical findings are shown as percentages of acquisitions per gamble problem (e.g., O vs. P). RMSDs are shown between the NO condition and the EV/
PH conditions, respectively. Differences between acquisition frequencies are significant, with all ts > 3.7, ps< .001, but note the interdependence of these tests.
RMSD, root mean square deviations; O, outcomes; P, probabilities; max, min, maximum or minimum values; r = 1, r = 2, r = 3: one-, two-, or three-reason
gambles.

7Counting the number of words in the two instructions (EV and PH) illus-
trates this expectation: We needed 581 words to instruct participants to use
EV and 710 words to use PH. A translation of the original instructions (in
German) to English is available in Appendix B.

8Note that for all remaining analyses, the full gamble problem set (Appendix
A) was used.
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SM ¼
ffiffiffiffi
N

p
A�G
N

� �
WG� BGð Þ � G� Að Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 G� 1ð Þ þ G2 A� 1ð Þ

q (1)

This SM distinguishes within-gamble transitions (e.g., the
outcome and the probability of a single gamble are fixated in
succession) from between-gamble transitions (e.g., two out-
comes, or two probabilities, of different gambles are fixated
in succession). The stimulus setup is represented in terms
of the number of gambles G (two in our experiment) and
the number of attributes A (four in our experiment); N de-
notes the total number of transitions. We replaced the abso-
lute occurrences of transitions N with proportions to
capture the index’s sensitivity to large Ns (see Pachur et al.,
2013; Schulte-Mecklenbeck, Sohn, de Bellis, Martin, &
Hertwig, 2013, for a similar approach). An SM> 0 indicates
a predominance of within-gamble transitions (expected for
EV); an SM< 0 indicates a predominance of between-
gamble transitions (expected for PH).

From the three instructed strategies, EV had, on average,
the highest, positive index (standard deviations in parenthe-
sis), SMEV=7.4 (3.0) indicating strong within-gamble
search; PH resulted in a negative index of SMPH=�2.1
(5.0), indicating between-gamble search; finally, the NO con-
dition resulted in a positive index, SMNO=3.2 (4.3;
Figure 2). Note that the NO condition on average produced
a positive SM when we compared EV and PH, significantly
different from the other two, instructed conditions.

These descriptive findings were supported statistically by
a multilevel regression with “participants” and “gamble
problem” as random intercepts and “condition” (EV, PH,
and NO) as a fixed effect. The SM index indeed was lower
in NO than in EV, b=�4.0, CI95%= [�4.4, �3.6] and higher
in NO than in PH, b=5.1, CI95%= [4.7, 5.5].

Fixation frequencies
For the analysis of fixation frequencies, we first evaluated the
three conditions on an aggregate level and then turned to a
more fine-grained analysis of acquisition behavior.

The average number of fixations was highest in EV
with FixEV=91.6 (24.3), indicating that a comparably

large number of fixations was needed to follow this strat-
egy. Indeed, the eight AOIs were fixated up to 200 times
by several participants. The second instructed strategy,
PH, resulted in FixPH=69.3 (9.2). Not surprisingly, par-
ticipants used the fewest number of fixations when not
provided with instruction (NO), FixNO=34.9 (6.4;
Figure 3).

We followed up with a multilevel regression analysis with
participants and gamble problem as random intercepts and
condition (EV, PH, and NO) as a fixed effect. This analysis
confirmed that the average number of fixations was lowest
in NO than in both EV, b=�58.4, CI95%= [�61.9, �55.0],
and PH, b=�32.7, CI95%= [�36.2, �29.3]. No difference
between EV and PH was found.

Next, we conducted a fine-grained analysis of acquisi-
tions of outcomes and probabilities, as proposed by Johnson
et al. (2008), who derived a list of predictions from the steps
that Brandstätter et al. (2006) identified as necessary in ap-
plying the PH (Pachur et al., 2013, tested the same set of
predictions). This analysis takes the relative size of out-
comes and probabilities into account by distinguishing be-
tween the minimum outcome, the probability of the
minimum outcome, the maximum outcome, and the proba-
bility of the maximum outcome. Table 1 presents the 10
predictions derived for EV and PH and the corresponding
empirical findings from our experiment. The first line, for
example, shows predictions for outcomes and probabilities
(O vs. P). For one-reason gambles (r=1), EV predicts equal
numbers of acquisitions of outcomes and probabilities, as
indicated by Or = 1 =Pr = 1. In contrast, PH predicts more ac-
quisitions of outcomes than of probabilities, as indicated by
Or = 1>Pr = 1. We report the percentages of acquisition of
outcomes and probabilities separately for the three
conditions.

Two points are noteworthy: (i) EV always predicts an
equal distribution of acquisition frequencies, regardless of
the type of information (O or P) attended to, or the number
of reasons (one, two, or three) considered (see priority rule
for EV above). (ii) PH predicts more acquisitions of out-
comes than of probabilities, and fewer acquisitions of the
maximum outcome than of the minimum one. Inspection of

Figure 2. Search metric depicted as a box plot for each of the three conditions, with superimposed averaged raw data for each participant
(jittered) and probability density function. Positive values indicate within-gamble transitions; negative values indicate between-gamble

transitions
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Table 1 shows that, overall, outcomes were fixated more fre-
quently than probabilities, replicating the finding of Pachur
et al. (2013). In addition, larger outcomes attracted more fix-
ations than smaller ones. The pattern for probabilities was the
opposite: Smaller probabilities attracted more fixations than
larger ones.

Assuming that the number of fixations is a proxy for im-
portance (Velichkovsky, 1999) or weight (Schkade & John-
son, 1989; Wedell & Senter, 1997; Willemsen, Böckenholt,
& Johnson, 2011), the fixation frequencies tell a simple
story: Outcomes are more important than probabilities, and
larger outcomes are more important than smaller ones.
Instructing participants to use specific strategies seems to
have little effect on this basic pattern. This indicates a
bottom-up effect (e.g., of features of the gamble problems)
that is stronger than the top-down effect of instructions.
These findings are also inconsistent with the assumption that
attention is distributed equally between outcomes and proba-
bilities when calculating an EV, as all differences in the EV
condition were significant.

Our method of inducing thought processes allows another
comparison that can shed light on information acquisition.
Specifically, we determined the difference between the NO
condition and the two instruction conditions by calculating
the root mean square deviation (RMSD; Hyndman &
Koehler, 2006) of acquisitions between the NO condition
and the EV/PH condition, respectively.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

t¼1 xNO; t � x EV ; PH½ �;t
� �2

n

s
(2)

To this end, the RMSD was calculated for each compari-
son presented in Table 1 (e.g., O vs. P between the NO and
EV/PH conditions, respectively) across all n=24 gamble
problems and then averaged across participants. A smaller
RMSD indicates greater similarity between two comparisons.

For all comparisons listed in Table 1, the RMSDs were
smaller for the NO–EV comparison than for the NO–PH

comparison. This means that the association between NO
and EV, in terms of acquisition frequencies, is closer than
that between NO and PH. We now turn to another measure
derived from eye-movement behavior: fixation duration.

Fixation duration
The average length of fixations was highest in EV with
LengthEV=254.1milliseconds (11.4) followed by PH, with
LengthPH=220.0milliseconds (10.8). The shortest fixation
durations were found for NO, LengthNO=207.7milliseconds
(10.3; Figure 4).

As expected, we found a main effect of condition in a
multilevel regression with participants and gamble problem
as random intercepts and condition (EV, PH, and NO) as a
fixed effect. The fixation duration for the NO condition was
shorter than EV, b=�40.5, CI95%= [�43.7, �37.4], and
PH, b=�18.1, CI95%= [�21.3, �15.0].

Let us briefly sum up our results, before turning to a more
detailed discussion of the issues at hand. The clearest results
are provided with the acquisition patterns (refer to section on
Acquisition Patterns) and the detailed fixation frequency
analysis (Table 1). The positive values of the SM for EV
and NO indicate, on an aggregate level, more transitions
within gambles than between gambles. The RMSD, describ-
ing the distance between two measures, is smaller for the
comparison NO–EV than for NO–PH in all of the 10 sug-
gested tests, indicating a closer relationship between NO–
EV than NO–PH. For the overall fixation frequency and fix-
ation duration, EV and PH are more closely related and dif-
ferent to NO; for these measures, it is less clear which
strategy is followed. These patterns indicate that both
instructed strategies (EV and PH) capture some, but not all,
of the processes used by the participants in the NO condition.

DISCUSSION

In this study, we instructed two decision strategies, EV and
PH, and investigated four dependent measures (choices,

Figure 3. Fixation frequencies depicted as a box plot for each of the three conditions, with superimposed averaged raw data for each participant
(jittered) and probability density function
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acquisition patterns, acquisition frequencies, and fixation du-
ration) to better understand how strategy use is reflected in
these measures. What do we learn from our results? For a dif-
ferentiation between the two instructed strategies (EV and
PH) and the NO condition, the acquisition patterns as well
as the fixation data speak a clear language: Without instruc-
tion, participants’ looking patterns indicate strategies more
closely related to EV than to PH. This interpretation rests
on four supporting facts: (i) Our findings are built on de-
tailed, model derived, predictions, and (ii) are consistent with
work by Johnson et al. (2008), as well as with work on the
distribution of attention on probabilities and outcomes
(Glöckner & Herbold, 2011; Huber, Wider, & Huber, 1997;
Pachur et al., 2013; Su et al., 2013). (iii) Our results hold
across different dependent variables, that is, SM and frequen-
cies. (iv) The within-subject comparison of patterns gener-
ated in NO compared with instructed EV or PH strategies
provides a unique perspective on the mapping between cog-
nitive processes and overt behavior.

We will now turn to a more detailed evaluation of our data.

Choice and fixation patterns depend on gamble difficulty
Why was the correspondence between choices in the EV
condition and the number of EV-maximizing choices so
low? At least four reasons can explain this result: Participants
(i) were unable, (ii) were unwilling to follow the instructions,
(iii) used a different strategy, or (iv) committed calculation
errors. We are confident that reasons (i) and (ii) did not gen-
erally apply in our study out of the following reasons: We
took great care in formulating and testing our instructions
(in a pilot study); we provided extensive written information
on how to calculate EVs in terms of algebraic steps; we re-
peated the written information verbally; we made partici-
pants go through an example gamble to make sure they
made the correct calculation—this step was repeated until
all participants were able to calculate EVs correctly; we pro-
vided a diagram version of the instructions in both the EV
and PH conditions for participants throughout the experi-
ment. To ensure high motivation to complete the task

correctly, we also offered financial incentives for correct
choices, as is common practice in the field of economics.

Of course, we cannot rule out that simplified versions of
EV and PH were used when participants were instructed to
follow these rules. Inspecting the SM, the number of fixa-
tions, and the length of fixations, it seems unlikely that this
was the case as the results match the theoretically assumed
patterns closely (high SM index, more fixations than
PH/NO, and more fixation duration than PH/NO).

For instance, simplifying calculations, especially in diffi-
cult choices, might be tempting. The difficulty of gambles is
often gauged in terms of the ratios of the gambles’ EVs: Dif-
ficult gambles have ratios equal or close to 1; easy gambles
have ratios sufficiently different from 1. The average ratio
for the gamble set we used was 1.01 (SD= .03), indicating
that our gambles were rather difficult. Pachur et al. (2013)
showed that the fit of EV to actual choices is dependent on
gamble difficulty, with 75% correct predictions for easy gam-
bles but only 38% for difficult gambles. This result might ex-
plain our comparably low matches to the EV predictions.

Against this background, we inspected the gamble set
used in the present study (from Pachur et al., 2013) in more
detail. It appears that the number of reasons (Appendix A)
and the difficulty of EV calculations are confounded in this
set. To illustrate this point, we calculated the average number
of outcome digits9 for each gamble. The one-reason gambles
had, on average, 16.7 digits; the two-reason gambles, 15.0
digits; and the three-reason gambles, 12.6 digits. Hence, as
the number of reasons increases, gambles become numeri-
cally easier to calculate and easier to compare,10 a pattern
that is also reflected in the decrease in fixation duration when
such calculations have to be performed. In the mathematical
cognition literature, such issues are discussed under the head-
ing “problem-size effect.” This effect describes the decrease

9For example, an outcome of 1000 has four digits. We focus on outcomes
because there is less variation in the number of digits in probabilities, which
are constrained in the interval [0, 1].
10Correlating the number of digits with the number of reasons, we found a
negative relationship of r(2302) =�.55, p< .001.

Figure 4. Average fixation depicted as a box plot for each of the three conditions, with superimposed averaged raw data for each participant
(jittered) and probability density function
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in completion time of a calculation as the number of digits
decreases (Zbrodoff & Logan, 2004). It is interesting to note
that most problem sets used in this literature are much easier
(i.e., have fewer digits) than those used in studies utilizing
gamble problems (DeWolf, Grounds, Bassok, & Holyoak,
2014; Raghubar, Barnes, & Hecht, 2010).

Another feature of the gamble-problem set is the number
of zero outcomes. Of the 6 two-reason gamble problems, 5
gambles have zero outcomes (20.8% of the 24 values); of
the 6 three-reason gamble problems, 8 gambles have zero
outcomes (25%; Table 2). In terms of calculating an EV, a
zero value is a game changer. Whereas a standard gamble
problem requires four multiplications, each zero outcome
removes one of those, making it increasingly easy to calcu-
late or compare. Note also the ambiguity of the value of zero
for process measures: Would we expect an O–P pattern if the
outcome is zero? Probably not, as in this case no multiplica-
tion is needed; the EV strategy thus simplifies to 0. Zero out-
comes thus might be responsible for our finding that
outcomes are inspected more often than probabilities, as well
as for the decrease in fixation duration across reasons in the
EV condition. This shows the yet overlooked importance of
such bottom-up features of the problem sets.

Interestingly, our data did not support the prediction of an
increase in processing time between one-, two-, and three-
reason gambles in the PH. As with the increased number of
reasons, more comparisons are necessary for each gamble
problem; hence, longer processing/reaction times should re-
sult (Brandstätter et al., 2006). In our positive outcome gam-
ble set, a zero value is always the minimum outcome.
According to PH’s priority rule, the minimum is the most im-
portant value for a choice. It remains a challenging task to de-
cide whether the special role of the zero outcome is derived
from its calculation consequences or from its processing prior-
ity. Overall, based on these findings, we conclude that choices
may not closely conform to the instructions unless (i) the out-
comes are sufficiently small to enable correct unaided mathe-
matical operations; (ii) only simple operations are required; or
(iii) zero outcomes change the processing strategy. In decision
research, these conditions are frequently violated.

Model comparisons and the merits of inducing thought
processes
Our set of directional tests, utilizing fixation frequencies on
outcomes and probabilities, demonstrates the value of induc-
ing thought processes. In the literature, much use is made of
a “scorekeeping heuristic”—in other words, the results of a
process tracing study are classified pro or contra a prediction
and tallied (cf. Johnson et al., 2008). Applying this heuristic,
we can make two interesting comparisons: comparing the
two instructed strategies to theoretical predictions and com-
paring them to the actual choices in the NO condition.
Concerning the theoretical comparison for EV, Table 1
shows that for 10 out of 10 tests, the theory predicts wrongly
for outcomes and probabilities (see Table 1, columns 1 vs.
3). For PH a score with 6 out of 10, directional predictions
being supported point at a performance close to chance level.
The second perspective, comparing the two instructed

strategies to the NO shows a similar pattern—the equality
predictions of EV cannot be found in the associated NO con-
dition (in Table 1 compare columns 1 and 5). Comparing the
NO condition to the PH predictions would also be inconclu-
sive as five tests speak for, and five against, the patterns pre-
dicted by PH (see columns 2 and 5).

Adding the instructed EV and PH conditions changes this
evaluation. This pattern leads to the rejection of the hypoth-
esis that participants actually used EV-related processes. Fur-
thermore, our data are clearly not consistent with the
assumption of an equal distribution of attention in EV. Quan-
tifying the differences between NO and the two instructed
strategies reveals a closer relationship between NO and EV
than between NO and PH—a conclusion that could not oth-
erwise have been drawn. Finally, the striking similarity in
the directionality of results for the two instructed and the
NO condition points to an interaction with factors other than
the instructions alone. These findings thus indicate an issue
largely ignored in the literature on judgment and decision
making: The bottom-up effects of how stimuli are con-
structed (Pleskac & Hertwig, 2014).

Our method of inducing thought processes was informed
by the lively discussion on how cognition is, and should
be, studied in the field of neuroscience (Henson, 2006;
Hutzler, 2014; Poldrack, 2006). Specifically, we were inter-
ested in the common, but deductively invalid, practice of
drawing inferences, from observed brain activations, about
the cognitive processes recruited by specific tasks (reverse
inference). What are the commonalities and differences be-
tween reverse inference and inducing thought processes?
Of course, in our example of choice behavior, there is no
mapping to a specific brain area, as would be the case in a
neuroscience study. However, the observation and interpreta-
tion of a fixation, or fixation pattern, as indication of some
cognitive process (e.g., attention or processing) seems to be
closely related to the discussion in neuroscience.

Our approach builds on the concept of forward inference
(Henson, 2006), which allows the predictions of different the-
ories to be pitted against each other. To apply forward infer-
ence, researchers need to design experimental conditions
that differ in the light of one theory, but not the other, follow-
ing a dissociation logic (Teuber, 1955). In neuroscience, this
procedure allows assigning an observed activation to the re-
spective theory and the corresponding cognitive process.
We believe that inducing thought processes by instruction
can generate similar dissociations—in our example, between
two competing choice models, but also more generally, be-
tween competing concepts about cognition. Our findings lend
themselves to forward inference to some degree, but it is clear
that the to-be-compared models need much more fine-grained
description when it comes to using data with the resolution
generated by contemporary eye-tracking technology.
Returning to our multiplication example: It is not enough to
predict an O→P transition for multiplication, as the exact
pattern depends on subtle features of the required computa-
tions, like the size of the numbers, the number of digits, or
the number of zeros. Presumably, the eyes will fixate differ-
ently when doing the 6× 0.3 multiplication and storing its re-
sult for later comparison, than when doing the same with
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1650×0.85. In addition, is the difference in magnitude best
accounted for by the frequency of fixations (larger magni-
tude—more fixations), or by the duration of fixations (larger
magnitude—longer fixation)? Some of these questions can
be answered in research using eye-tracking technology, but
concurrent collection of other types of process data, being
conceptually closer to the studied process, for example, think-
ing aloud protocols (Russo, 2011), might be necessary to gain
a thorough understanding of the relevant processes.

Tracking eye-movement results in minute details, and for-
ward inference accordingly requires precise models that in-
corporate these details. Other disciplines have put forward
models that capitalize on the high-resolution data available.
For example, one of the prominent reading models, the EZ
Reader (Reichle, Rayner, & Pollatsek, 1999), makes detailed
predictions on reading behavior for the bottom-up level (e.g.,
oculomotor control and visual processing) and the top-down
level (e.g., attention).

Conclusions
Our experiment demonstrates that inducing thought pro-
cesses is a useful tool to (i) identify incorrect assumptions
about the distribution of attention (e.g., that attention is
equally distributed between outcomes and probabilities
when people calculate EVs) and (ii) evaluate the process pre-
dictions of competing models. A key factor in achieving the
second point is that researchers collect data on how partici-
pants actually acquire information when they apply a spe-
cific strategy rather than predicting how they should
acquire information based on purely theoretical consider-
ations. Theories should move toward precise predictions ac-
knowledging the level of detail provided by modern process

tracing technology. Using current process tracing technology
uncovers the necessity of developing more detailed models
of decision making. In Marr’s (1982) terminology, describ-
ing models at the computational level, where problems are
specified in the generic manner that is typical for decision
theory, is not enough. We need to formulate our models also
on the algorithmic level, describing how exactly the compu-
tational problems are solved. This is the bridge to the
implementational level, which identifies the neuronal mech-
anisms and their organization actually performing the com-
putation. One of the priority heuristic’s strengths is the
detailed process predictions on an algorithmic level. With
eye-movement technology, correct forward inference (i.e.,
predicting eye-movement patterns from strategy) and correct
reverse inference (i.e., inferring strategy use from eye-
movement patterns) require a close fit between the graininess
of data and the graininess of theory. Somewhat paradoxi-
cally, the resolution of data from eye-tracking seem to be
“too high” for the models tested here, namely, EV and PH.
Put differently, decision models need to be fleshed out in
much more processing details instead of paramorphic as-if-
descriptions in order to lend themselves to the decisive test
by eye-movement technology.
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Table A1. The 24 gamble problems presented

#

Gamble A Gamble B

EV
ratio Source Reasons

Option 1 Option 2 Option 1 Option 2

O1 P1 O2 P2 O1 P1 O2 P2

1 2000 0.6 500 0.4 2000 0.4 1000 0.6 1 BGH 1
2 4000 0.2 2000 0.8 3000 0.7 1000 0.3 1 BGH 1
3 800 0.8 500 0.2 820 0.6 600 0.4 1.01 PHGB 1
4 5000 0.7 100 0.3 5000 0.65 1000 0.35 0.98 PHGB 1
5 �500 0.4 �2000 0.6 �1000 0.6 �2000 0.4 1 BGH 1
6 �2000 0.7 �5000 0.3 �2800 0.9 �4800 0.1 0.96 PHGB 1
7 �500 0.2 �800 0.8 �600 0.4 �820 0.6 1.01 PHGB 1
8 �50 0.3 �3500 0.7 �600 0.35 �3400 0.65 1.02 PHGB 1
9 �100 0.3 �5000 0.7 �1000 0.35 �5000 0.65 0.98 PHGB 1
10 �50 0.1 �900 0.9 �400 0.15 �880 0.85 1.01 PHGB 1
11 �2000 0.6 �2350 0.4 �1700 0.55 �2500 0.45 1.04 PHGB 1
12 �150 0.7 �2500 0.3 �650 0.9 �2400 0.1 1.04 PHGB 1
13 2000 0.5 0 0.5 4000 0.2 300 0.8 0.96 PHGB 2
14 1600 0.3 1000 0.7 1300 0.5 1000 0.5 1.03 PHGB 2

(Continues)
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APPENDIX B:
Dear Participant,

Thanks a lot for participating in our experiment. You will
now see information about different gamble problems on the
computer screen.

These gambles are characterized through

(a) consequences (i.e., amounts of money to win or lose) and
(b) probabilities for each consequence.

Example:

Consequences can come as wins or losses, e.g., 20 or
�20. Each of the consequences varies within a probability
of 0 to 1. A probability of .05 means that a consequence will
happen with a 5% probability; a probability of .95 means that
a consequence happens with a 95% probability. Within one
gamble (e.g., Gamble A), the sum of the probabilities of
the two consequences is always 1.

Your task it to determine which of the two gambles has
the higher expected value. The expected value of gambles
can be determined through weighting the consequences by
their probabilities.

Here is an example:
For Gamble A in the example above, the expected value is

calculated as follows:

20�0:1þ 1�0:9 ¼ 2þ 0:9 ¼ 2:9

For Gamble B in the example above, the expected value is
calculated as follows:

4�0:4þ 3�0:6 ¼ 1:6þ 1:8 ¼ 3:4

Hence, Gamble B has a higher expected value (3.4) than
Gamble A (2.9).

For gamble problems where money can be lost, the fol-
lowing applies:

Example for losses:

For Gamble A in the example above, the expected value is
calculated as follows:

�20�0:1þ �1ð Þ�0:9 ¼�2þ �0:9ð Þ ¼ �2:9

For Gamble B in the example above, the expected value is
calculated as follows:

�4�0:4þ �3ð Þ�0:6 ¼�1:6þ �1:8ð Þ ¼ �3:4

Hence, Gamble A has a higher expected value (�2.9) than
Gamble B (�3.4) because the expected loss is smaller.

For every correct answer, you receive 20 cents. You can
make another EUR 4.80 by answering all gambles correctly.
The amount you made will be paid to you in addition to your
showup fee.

Please note that aids like pocket calculators or paper are
not allowed during the study.

Exercise
We will now walk you through a step-by-step example of

calculating the expected value:

Gamble A: You win 20 with a probability of .1 and 1
with a probability of .9

Gamble B: You win 4 with a probability of .4 and 3
with a probability of .6

Gamble A: You lose 20 with a probability of .1 and 1
with a probability of .9

Gamble B: You lose 4 with a probability of .4 and 3
with a probability of .6

Table A1. (Continued)

#

Gamble A Gamble B

EV
ratio Source Reasons

Option 1 Option 2 Option 1 Option 2

O1 P1 O2 P2 O1 P1 O2 P2

15 1800 0.2 200 0.8 1000 0.4 200 0.6 1 PHGB 2
16 6000 0.45 0 0.55 3000 0.9 0 0.1 1 KT 2
17 �1000 0.7 �1600 0.3 �1000 0.5 �1300 0.5 1.03 PHGB 2
18 0 0.55 �6000 0.45 0 0.1 �3000 0.9 1 KT 2
19 6000 0.3 2500 0.7 8200 0.25 2000 0.75 1 BGH 3
20 3000 0.4 2000 0.6 3600 0.35 1750 0.65 1.00 BGH 3
21 6000 0.001 0 0.999 3000 0.002 0 0.998 1 KT 3
22 4000 0.2 0 0.8 3000 0.25 0 0.75 1.07 KT 3
23 0 0.8 �4000 0.2 0 0.75 �3000 0.25 1.07 KT 3
24 0 0.999 �6000 0.001 0 0.998 �3000 0.002 1 KT 3

Note: Subscripts indicate corresponding O–P pairs. The three sources of our gamble set are BGH =Brandstätter et al. (2006), PHGB= Pachur et al. (2013), and
KT =Kahneman and Tversky (1979). Following Brandstätter et al. (2006), 1–12 are one-reason gambles, 13–18 are two-reason gambles, and 19–24 are three-
reason gambles.
O, outcomes; P, probabilities.
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Dear Participant,
Thanks a lot for participating in our experiment. You will

now see information about different gamble problems on the
computer screen.

These gambles are characterized through

(a) consequences (i.e., amounts of money to win or lose) and
(b) probabilities for each consequence.

Example for gains

Consequences can come as wins or losses, e.g., 20 or
�20. Each of the consequences varies within a probability
of 0 to 1. A probability of .05 means that a consequence will
happen with a 5% probability; a probability of .95 means that
a consequence happens with a 95% probability. Within one
gamble (e.g., Gamble A), the sum of the probabilities of
the two consequences is always 1.

Your task is to determine which of the two gambles
(A or B) should be chosen based on a decision rule.
The decision rule consists out of one, two, or three steps.
How many steps are needed to make a decision depends
on the gamble problem at hand.

The rules used are different for gains and losses—we will
explain each of these now in turns:

For gains, the following steps have to be used:

Step 1: Compare the minimal gains. Evaluate whether
the minimal win in Gambles A and B differs by 1/10 or
more of the maximum possible win. If this is the case,
choose the gamble with the larger minimal win. Ignore
the rest of the information. If the minimal gains differ by
less than 1/10 of the maximum gain, move on to Step 2.
Step 2: Compare probabilities of the minimum gains.
Evaluate whether the probabilities of the minimal wins
differ by 1/10 or more. If this is the case, choose the

gamble with the smaller of the two probabilities. If the
probabilities of the minimum gains differ by less than
1/10, move on to Step 3.
Step 3: Compare the maximum gains. Evaluate which
of the two gambles, A or B, has the higher maximum
gain. Choose the gamble with the higher maximum gain.
If the maximum gains do not differ, choose randomly.

For losses, the following steps have to be used:

Step 1: Compare the minimal losses. Evaluate whether
the minimal losses in Gambles A and B differ by 1/10
or more of the maximum possible loss. If this is the case,
choose the gamble with the smaller minimal loss. Ignore
the rest of the information. If the minimal losses differ
by less than 1/10 of the maximum loss, move on to Step 2.
Step 2: Compare probabilities of the minimum losses.
Evaluate whether the probabilities of the minimal losses
differ by 1/10 or more. If this is the case, choose the
gamble with the larger of the two probabilities. If the
probabilities of the minimum losses differ by less than
1/10, move on to Step 3.
Step 3: Compare the maximum losses. Evaluate which
of the two gambles, A or B, has the lower maximum loss.
Choose the gamble with the lower maximum loss. If the
maximum losses do not differ, choose randomly.

Please note that aids like pocket calculators or paper are
not allowed during the study.

Exercise
We will now walk you through a step-by-step example

how to apply the three steps described above:

Step 1: Read each of the values once.
Step 2: In Gamble A, multiply Value

1 with Chance 1 and remember
the result. 10 × 50%=5

Step 3: In Gamble A, multiply Value
2 with Chance 2 and remember
the result. 0 × 50%=0

Step 4: Add up the results from step
2 and 3 and remember the result.
5 + 0 = 5

Step 5: In Gamble B, multiply Value
1 with Chance 1 and remember
the result. 20 × 20%=4

Step 6: In Gamble B, multiply Value
2 with Chance 2 and remember
the result. 1 × 80%= .8

Step 7: Add up the results from step
5 and 6 and remember the result.
4 + .8 = 4.8

Step 8: Choose the Gamble with the higher sum.
5 (Gamble A)> 4.8
(Gamble B)➔Gamble A➔Press A

Gamble A: You win 20 with a probability of .1 and 1
with a probability of .9

Gamble B: You win 4 with a probability of .4 and 3
with a probability of .6

Step 1: Read each of the values once.
Step 2: Divide the largest gain by 10 and

remember the result. 20/10 = 2
Step 3: Calculate the difference between

the two smallest gains. 1� 0 = 1
Step 4: If the difference between the two

smaller gains (Step 3) is equal or
larger than the result from Step 2,
then choose the gamble with the
larger smaller win; if this is not the
case, continue to Step 5.
1< 2➔ continue

Step 5: Calculate the difference between the
probability of the smaller gains and
remember the result. 80� 50 = 30

Step 6: If the difference of the probabilities
of the smaller gains (Step 5) is equal or
larger than 10%, choose the gamble with
the smaller chance of the smaller gain.
30%> 10%➔Gamble A➔Press A
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